User's Manual Asmik

单晶硅压力变送器

使用说明书

杭州米科传感技术有限公司

www. hzmik. com

杭州米科传感技术有限公司

U-MIK-2501P3000-LDSCN3 第3版 前言

●感谢您购买本公司产品。

●本手册是关于产品的各项功能、接线方法、设置方法、操作方法、 故障处理方法等的说明书。

●在操作之前请仔细阅读本手册,正确使用本产品,避免由于错误 操作造成不必要的损失。

●在您阅读完后,请妥善保管在便于随时取阅的地方,以便操作时 参照。

注意

●本手册内容如因功能升级等有修改时, 恕不通知。

●本手册内容我们力求正确无误,如果您发现有误,请与我们联系。

●本手册内容严禁转载、复制。

●本产品禁止使用在防爆场合。

版本

U-MIK-2051P3000-LDSCN3 第三版 2021 年 1 月

确认包装内容

打开包装箱后,开始操作之前请先确认包装内容。如发现型号和数 量有误或者外观上有物理损坏时,请与本公司联系。

产品包装内容

序号	物品名称	数量	备注
1	单晶硅差压变送器	1	
2	说明书	1	
3	合格证	1	
4	螺丝刀	1	

第一章 产品概述	1
1.1产品简介	1
1.2工作原理	1
第二章 主要特点	3
第三章 技术参数	4
3.1 基本参数	4
3.1 差压量程及性能参数	4
3.1 单压量程及性能参数	5
第四章 使用与安装	7
第五章 电气连接	10
第六章 菜单操作	13
6.1 菜单功能	13
6.2 压力单位	16
6.3 Out 功能单位表	17
第七章 操作说明	19
7.1 按键定义	19
7.2 菜单启动与退出	19
7.3 菜单浏览	19
7.4 菜单选择	20
7.5 数据输入	20
7.5.1 数据选择	20
7.5.2 数据编辑	21
7.6 操作指南	23
7.6.1 菜单启动与退出	23
7.6.2 变量查看	23
7.6.3 模拟量程加压零位迁移	25
7.6.4 模拟量程加压满位设定	25
7.6.5 模拟量程零位设定	26
7.6.6 模拟量程满位设定	
7.6.7 数字零点调整	29

目录

	7.6.8 模拟量程平行迁移	
	7.6.9 阻尼设定	
	7.6.10 显示类型选择	
	7.6.11 单位选择	
	7.6.12 特性函数选择	
第八章	注意事项	
第九章	产品维护与保养	
第十章	质保及售后服务	

第一章 产品概述

1.1 产品简介

智能压力/差压变送器是采用高精度硅传感器技术,新型智能高精度 变送器,基于通过微处理器的电子部件,实现与现场设备通信。

压力/差压变送器包括表压、差压、绝对压力、高静压差压等多个品种。广泛应用于石油、化工、电力、冶金、水务、酿造等工业领域。

长期以来,以产品的卓越品质和优质的售后服务,赢得了用户一致 的好评。

1.2 工作原理

压力变送器包括两个功能单元: 主单元、辅助单元。如图1所示:

图1压力(绝压)变送器

主单元包括传感器和过程连接,工作原理如下:

过程介质通过柔性、抗腐蚀性的隔离膜片以及填充液在测量膜片上 施加压力,测量膜片的一端接大气(用于表压测量)或真空(用于绝压测 量)。当所测的压力通过测量膜片和填充液,传递给传感器硅芯片,使传 感器硅芯片的阻值发生变化,从而导致检测系统输出电压变化。该输出 电压与压力变化成正比,再由适配单元和放大器转化成一标准化信号输 出。 差压变送器包括两个功能单元: 主单元、辅助单元。如图2所示:

主单元包括传感器和过程连接,工作原理如下:

传感器模块采用全焊接技术,内部拥有一个整体化的过载膜片,一 个绝对压力传感器和一个差压传感器。绝压传感器只装在传感器膜盒的 高压侧,作为静压补偿的参考值。差压传感器的负压侧与传感器膜盒的 低压腔相连。当所测的差压力通过隔离膜片和填充液,传递给传感器硅 芯片,使传感器芯片的阻值发生变化,从而导致检测系统输出电压变化。 该输出电压与压力变化成正比,再由适配单元和放大器转化成一标准化 信号输出。

第二章 主要特点

●中心传感单元采用全球领先的高精度硅技术

●专利双过载保护膜片设计,单向过压最高可达 40MPa

●静压误差最优在±0.05%/10MPa内,远非同场合电容式产品可比

●温度性能最优在±0.04%/10K内,温度影响变化极小

●最高100:1的量程比调节,适应性更广

●多参量(压力、温度、静压)输出应用可选

●EMC 符合最新国家

第三章 技术参数

3.1 基本参数

	差压	单压	
量程范围	-100kPa…0∼0.1kPa …3MPa	0~0.6kPa…60MPa(表 压) 0~2kPa…3MPa(绝压)	
压力类型	差压	表压、绝压	
供电输出	4~20mA两线制(12V~42V,一般24V) 4~20mA+HART协议(15V~42V,一般24V)		
精度	$\pm 0.075\%$ FS; $\pm 0.1\%$ FS		
环境温度	-40-85 ℃ (带液晶显示、氟橡胶密封圈 -20-65℃)		
介质温度	-40-100℃		
存储温度	-50-85℃;带液晶显示时-40-85℃		
防护等级	IP67		
长期稳定性	±0.1%FS/3年		
负载电阻 R=(U-12)/21mA;U:供电电压			

表1

3.1 差压量程及性能参数

表 2

标称量程	量程下 量程 限 上限		环境温度影响	额定工作压力
0-100Pa	11rDo	11rDo	±	
\sim 1kPa	-IKPa	ТКРа	(0.45×TD+0.25)%FS	$16MD_{0}/25MD_{0}/40M$
0-200Pa	61rDo	61rDo	±	
\sim 6kPa	-OKPa	окра	(0.30×TD+0.20)%FS	ra
0-400Pa	-40kPa	40kPa	±	

\sim 40kPa			(0.20×TD+0.10)%FS	
0-2.5kPa	-250kP	250kP		
\sim 250kPa	а	а		
0-30kPa	-500kP	21 AD a		
\sim 3MPa	а	SMPa		
注 1: TD=最大量程/调节量程,若 TD>10 则精度为: ± (0.0075×TD)%				

3.1 单压量程及性能参数

量程	量程下 限	量程上 限	环境温度影响	过载
			表压	
0-0.6kPa∼ 6kPa	-6kPa	6kPa	\pm (0.30×TD+0.20)%FS	7MPa
0-2kPa~ 40kPa	-40kPa	40kPa		7MPa
0-2.5kPa~ 250kPa	-100kPa	250kPa	±(0.20×TD+0.10)%FS	4MPa
0-30kPa~ 3MPa	-100kPa	3MPa		15MPa
0-0.1MPa~ 10MPa	-100kPa	10MPa		20MPa
0-0.21MPa~ 21MPa	-100kPa	21MPa		60MPa
0-0.4MPa~ 40MPa	-100kPa	40MPa	-	60MPa
0-0.6MPa~ 60MPa	-100kPa	60MPa		70MPa

表 3

绝压					
0 -2kPa \sim	OkPa	10kPa	$+(0.30 \times TD+0.20)\%FS$	1MPa	
40kPa	UKI d	TOKI a	$\pm (0.30 \times 10^{+} 0.20)/013$	I IVII a	
0-10kPa \sim	Ol-Do	2501/Do			
250kPa	UKFa	230KF a	$\pm (0.20 \times TD + 0.10) 0/ES$	41v1r a	
0-30kPa \sim	OleDo	2MDa	$(0.20 \land 1D+0.10)\%FS$	16MDa	
3MPa	UKPa	SIVIPa		Towpa	

第四章 使用与安装

变送器显示壳体可以相对传感器旋转约360度,而不影响性能和内 部配线。不要强制旋转传感器部分,用 2mm 六角扳手来松开或锁定紧 定螺钉。这样可对电子线路连接和输出显示器影响量达到最小。

图 3 水平配管连接方式(正面) 图 4 水平配管连接方式(侧面)

图 9 墙装连接方式

图 10 垂直配管连接方式

为了正确安装,必须遵循以下几点:

(1) 引压管道尽可能短,并避免急弯折

(2) 引压管道的安装坡度不应小于 1:12, 以免引起沉淀

(3)引压管道在连接到变送器前,必须用压缩空气吹一遍,最好用被测 介质冲洗一遍

(4) 如果介质是液体,则应彻底放空引压管道

(5)引压管道的布局,应使得被测液体中的气泡或被测气体中的沉淀物 能够回流到过程管道中

(6) 安装过程管道时,不得有任何泄露

第五章 电气连接

由于变送器不带电源开关,所以系统必须配置过电流保护或电源切断装置。检查工作电压是否和铭牌上规定的一致。电源盒输出信号共享 一对相线。电气连接可通过 NPT1/2 或 M20x1.5 电缆入口与接线端子连 接。导线连接端子可接截面积为 2.5mm 以下导线。

可以通过 PC 机或笔记本电脑经手操器对变送器进行操作。手操器 可以并联到信号回路的任意处。变送器于手操器是通过叠加在 4~20mA 输出信号上的交流信号进行通信的。次调制不改变平均值,因此不影响 测量信号。手操器和电源装置之间的电阻必须不小于 250 欧姆。若按标 准安装不能达到此值,则需附加一电阻。

安装好变送器后,接通电源即可投入运行。

●通电前必须检查以下各项:

- (1) 过程连接
- (2) 电器连接
- (3) 变送器的引压管及测量腔体充满介质

●投入运行,应按以下步骤操作截止阀:

(1) 若有截止阀,打开截止阀,接通压力;

(2)打开三阀组上的平衡阀(此项仅适用差压变送器,压力变送器 无此项)

(3) 打开正腔截止阀

(4) 关闭平衡阀(此项仅适用于差压变送器,压力变送器无此项);

(5)打开负腔截止阀(此项仅适用于差压变送器,压力变送器无此项)

●若要退出运行变送器,则按相反的步骤操作:

带 4~20mA 输出信号注意事项:如果所测压力在铭牌所标的范围内,则输出电流信号在 4~20mA。如果压力低于标定的测量范围,输出信号在 3.9~4mA之间。如果压力高于标定的测量范围,输出信号在 20~20.5mA 之间。输出信号极限: Imin=3.9mA, Imax=20.5mA。

报警电流模式可设置,低报模式(最小)为3.7 mA,高报模式(最大)为21 mA,不报模式(保持)为保持故障前的有效电流值,标准设置为高报模式。

●零位校正:

安装变送器时,可能会出现安装引起的零位偏移(如安装位置倾斜、 差压变送器水平位置不一致、及环境温度影响)此时必须校正零位偏移。

带有按钮控制单元的变送器进行零点校正时,变送器必须达到其工 作温度(约通电5分钟),具体方法详见下一章节:菜单操作。

变送器的外部控制按钮位于铭牌背后。

如需使用,松开铭牌螺丝并旋转 90 度;完成校验程序后安装相反程 序固定。图示如下就地按钮:

图 13 就地按钮

●零位和量程校验:

校验智能变送器可以采用下面几种方法:

(1) 变送器辅助单元中的就地"按钮"按键。

(2) 使用手操器。

(3) 使用 PC 组态软件。

本说明书在"菜单操作"章节详细介绍第一种方法;其他方法在有 关组态工具中说明。

第六章 菜单操作

6.1 菜单功能

带液晶表头时,可通过变送器顶部的(Z)(S)按键对变送器进行如下组态,(注菜单功能列表内名称项内容,分别显示在液晶表头的第一 行或第二行。)如下图所示液晶表头(图 14)和菜单功能列表

图 14 液晶显示表头

表	4
~~	

编号	菜单项	名称	操作[Z][S]
主菜单	子菜单(进入主菜单, 按下双键进入子菜单, 即操作栏)		
1	预览	VIEW	翻查(1.基础压力值,2.百分比值,3.电流值,4.模拟输出值,5.温度值,6.静压值,7.保留,8.量程起始值,9.量程满位值)
2	调量程起始值	GET 0%	双键按下,将当前压力设定为压 力量程起始值
3	调量程满位值	GET 100%	双键按下,将当前压力设定为压 力量程满位值
4	设量程起始值	SET 0%	使用[Z][S]键,调整到需要的数 值,双键按下,保存当前值为压 力量程起始值
5	设量程满位值	SET 100%	使用[Z][S]键,调整到需要的数 值,双键按下,保存当前值为压 力量程满位值
6	零位迁移	SHIFT ZERO	双键按下,将当前压力设定为传 感器量程0位
7	量程平移	OFFSET ZERO	使用[Z][S]键,调整到合适的百 分比数值,双键按下,量程整体 平移设定的百分比数值
8	阻尼值	DAMPING	使用[Z][S]键,调整到需要的阻 尼值,双键按下后保存当前的阻 尼值(阻尼值取值范围 0.1s [~] 60.0s)
9	显示方式	DISPLAY	使用[Z][S]键,翻选需要的显示 类型,双键按下后,保存选定当 前的显示类型(基础压力,百分 比,电流,模拟输出)
10	显示精度	DISPLAY ACCUR	使用[Z][S]键,翻选想设定的屏 幕显示精度,双键按下后,保存 选定的小数点后有效位数 Class0-Class4 表明保留小数 点后 0-4 位)
11	压力单位	UNIT	使用[Z][S]键,翻选需要的压力 单位,双键按下后,保存选定当 前的压力单位
12	线性功能	FUNCTION	使用[Z][S]键,翻选需要的测量 线性函数,双键按下后,保存选

			定当前的线性函数(线性,平方 根)
13	报警模式	ALARM TYPE	使用[Z][S]键, 翻选需要的报 警类型, 双键按下后, 保存选 定报警模式(高爆,低爆,报警 输出当前电流)
14	模拟起始值	OUT 0%	使用[Z][S]键,调整到需要的数 值,双键按下,保存当前值为模 拟输出量程起始值
15	模拟满位值	OUT 100%	使用[Z][S]键,调整到需要的数 值,双键按下,保存当前值为模 拟输出量程满位值
16	模拟单位	OUT UNIT	使用[Z][S]键,翻选需要的模拟 输出单位,双键按下后,保存选 定当前的模拟输出单位(包括流 量,体积,长度,密度单位)
17	固定电流	SIM CUR	使用[Z][S]键,翻选固定电流数 值,自动进入固定电流模式,双 键按下,退出固定电流模式(可 选 4.00mA,8.00mA,20.00mA)
18	小信号切除	SIGNAL CUT	使用[Z][S]键,调整到需要的百 分比数值,双键按下,保存当前 值为小信号切除百分比(建议调 整范围,0.01%~10%)
19	按键锁定	LOCK unPo/Po	使用[Z][S]键,翻选未锁定 (Unlocked),与锁定(Locked) 两种状态,双键按下,选定保存 当前状态值为当前按键状态
20	版本号	SOFT VER	显示当前软件版本号(R12)

6.2 压力单位

编号	名称	显示
1	英寸水柱(20°C / 68°F)	inH2O
2	英寸汞柱	inHg
3	英尺水柱 (20°C / 68°F)	ftH20
4	毫米水柱 (20°C / 68°F)	mmH2O
5	毫米汞柱	mmHg
6	Psi	psi
7	bar	bar
8	mbar	mbar
9	g/cm2	g/cm2
10	Kg/cm2	kg/c2
11	Ра	Pa
12	KPa ²	kPa
13	Torr	torr
14	ATM	atm
15	米水柱(4°C / 39°F)	mH4O
16	MPa	MPa
17	英寸水柱 (4°C / 39°F)	inH40
18	毫米水柱 (4°C / 39°F)	mmH40
19	米水柱(20°C / 68°F)	mH2O

表 5

6.3 Out 功能单位表

序号	名称	显示						
体积流量类								
1	立方米/秒	m3/s						
2	立方米/分钟	m3/m						
3	立方米/小时	m3/h						
4	立方米/天 m3/d							
5	升/秒	L/s						
6	升/分钟	L/m						
7	升/小时	L/h						
8	立方英尺/秒	ft3/s						
9	立方英尺/分钟	ft3/m						
10	立方英尺/小时	ft3/h						
11	加仑/秒	gal/s						
12	加仑/分钟	gal/m						
13	加仑/小时	gal/h						
	Volume							
14	立方米	m3						
15	升	L						
16	美加仑	gal						
17	立方英尺 ft3							
18	立方英寸	in3						
	Length							
19	*	m						
20	厘米	ст						

表 6

21	英尺 ft						
22	英寸 in						
Mass							
23	千克 Kg						
24	吨 t						
25	磅 lb						
Mass flow							
26	千克每秒	Kg/s					
27	千克每米	K Kg/m					
28	千克每小时	Kg/h					
29	吨每米	t/m					
30	吨每小时	t/h					
31	吨每天	t/d					
32	磅每秒	b/s					
33	磅每分钟 Lb/m						
34	磅每小时 Lb/h						
Mass per Volume							
35	千克每立方米	Kg/m3					
36	千克每升	kg/L					
37	克每升	g/L					

第七章 操作说明

7.1 按键定义

针对就地按钮 "Z" 和 "S", 有以下三种组合的按键定义:

"确认"键:同时按下按钮"Z"和"S",保持 0.2 秒后再全部松开; 每执行一次该操作,就输入了一次"确认"键;

"左"键:按下按钮"S",保持 0.2 秒后再松开;每执行一次该操作,就输入了一次"左"键;

"右"键:按下按钮"Z",保持 0.2 秒后再松开;每执行一次该操 作,就输入了一次"右"键。

提示:在操作就地按钮时,推荐使用无磁性材料工具,否则有可能 导致单键按下无效果、或单键按下产生双键按下的效果的情况发生。

7.2 菜单启动与退出

在菜单未被启动的状态下,输入一次"确认"键,则菜单被启动, 显示器显示如图 15 所示:

图 15

在图 15 所示状态下,输入一次"确认"键,则退出菜单,菜单返回 未启动状态。

7.3 菜单浏览

菜单启动后,可通过输入"左"键和"右"键来浏览菜单。 "左"键为从下向上循环显示菜单树中的各菜单项,在如图 15 所示的情况下,输入一次"左"键,显示器显示如图 16 所示;再输入一次"左" 键,显示器显示如图 17 所示。

图 16

"右"键为从上向下循环显示菜单树中的各菜单项,在如图 15 所示的情况下,输入一次"右"键,显示器显示如图 18 所示;再输入一次"右"键,显示器显示如图 19 所示。

图 18

图 19

7.4 菜单选择

在菜单浏览时,输入一次"确认"键,则程序会执行该菜单对应的 功能。

7.5 数据输入

用户在通过菜单进行仪表参数设置时,可以有两种方式进行数据输入:

7.5.1 数据选择

举例说明: 假设当前单位是"kPa"、菜单未启动,现在要将单位改为"bar",可按下列步骤进行:

输入一次"确认"键(启动菜单),显示器显示如图 15 所示;

输入十次"左"键或十一次"右"键(菜单浏览),显示器显示如图 20 所示;

输入一次"确认"键(菜单选择),则程序进入单位设置功能,显示器显示如图 21 所示;

图 21

输入五次"左"键或十四次"右键"(数据选择),显示器显示如图 22 所示;

输入一次"确认"键(数据输入),程序将单位更改为"bar",并显示提示信息,显示器显示如图 23 所示;

图 23

0

输入一次"确认"键,清除提示信息,程序返回到菜单浏览状态,显示器显示如图 20 所示;

输入十一次"左"键或十次"右"键(菜单浏览),显示器显示如图 15 所示;

输入一次"确认"键,退出菜单功能,菜单返回未启动状态。

此时,可以观察到单位已变为"bar"。

7.5.2 数据编辑

举例说明:假设当前阻尼值为 0.1s,菜单未启动,现在要将阻尼值 改为 1.0s,可按下列步骤进行:

输入一次"确认"键(启动菜单),显示器显示如图 15 所示;

输入十三次"左"键或八次"右"键(菜单浏览),显示器显示如图 24 所示;

图 25

输入一次"确认"键(菜单选择),显示器显示如图 25 所示;

输入一次"左"键或"右"键,进入数据编辑状态,此时在阻尼值 单位"s"上方的字符"0"上出现闪烁的光标。

光标闪烁:光标出现时,显示器显示如图 26 所示,光标消失时,仍 显示原来的字符。

图 26

光标移动:进入数据编辑状态后,每输入一次"左"键,光标将向 左移动一位,如果此位是小数点,则光标自动再左移一位;如果已经是 最左边一位,则光标移动到最右边一位。

数值翻转:进入数据编辑状态后,每输入一次"右"键,光标处的 数字将加1,即"0"变成"1","1"变成"2"等等,特殊的变化有"9" 变成"0",空格符""变成"1","+"变成"-","-"变成"+"。

输入二次"左"键,将光标移动到字符"1"上;

输入九次"右"键,将光标处的字符"1"翻转成"0";

输入一次"左"键,将光标移动到小数点左边第一个字符"0"上; 提示:移动光标时,光标将自动跳过小数点。

输入一次"右"键,将光标处的字符"0"翻转成"1",显示器显示 如图 27 所示;

输入一次"确认"键(数据输入),程序将阻尼值改为1.0s,并显示提示信息,显示器显示如图23所示;如果输入数据值超出了程序允许的

范围,程序将提示错误,显示器显示如图 28 所示。此时,需要再输入一次"确认"键,清除错误提示信息,程序重新回到菜单浏览状态,显示器显示如图 24 所示。

图 29

输入一次"确认"键,清除提示信息,程序返回到菜单浏览状态,显示器显示如图 24 所示;

输入八次"左"键或十三次"右"键(菜单浏览),显示器显示如图 15 所示;

输入一次"确认"键,退出菜单功能,菜单返回未启动状态。

7.6 操作指南

7.6.1 菜单启动与退出

在菜单未被启动的状态下,输入一次"确认"键,则菜单被启动, 显示器显示如图 15 所示:

在图 15 所示状态下,输入一次"确认"键,则退出菜单,菜单返回 未启动状态。

7.6.2 变量查看

启动菜单;

通过菜单浏览,选中"VIEW"菜单,显示器显示如图 18 所示; 输入一次"确认"键,进入变量查看功能。此时将显示第一个变量 "当前压力/差压值"、工程单位及变量序号,显示器显示如图 30 所示(假 设此时的工程单位为"kPa");

提示: "******" 表示不确定的压力/差压值。

输入一次"右"键,显示第二个变量"当前压力/差压值相对于量程 的百分比值"、百分号"%"及变量序号,显示器显示如图 31 所示;

*	*	*	*	*	*	*
2		2004	0.095	0.034	~	%

提示: "******" 表示不确定的压力/差压值的量程百分比值。

输入一次"右"键,显示第三个变量"输出电流值"、单位"mA" 及变量序号,显示器显示如图 32 所示;

提示: "******" 表示不确定的输出电流值。

输入一次"右"键,则又显示第一个变量,显示器显示如图 30 所示; 如果依次输入"左"键,则逆序显示第一、第二、第三变量。

输入一次"确认"键,返回菜单浏览状态,显示器显示如图 18 所示。 提示:在"VIEW"菜单功能中,"左"键与"右"键的功能与菜单

浏览类似。

7.6.3 模拟量程加压零位迁移

举例说明:假设有一安装在工程现场的差压变送器,其传感器量程 上限为40 kPa,模拟量程为0~20 kPa;实际工作时,在管道差压为0~20kPa 时,显示器显示为0.1~20.1kPa,输出电流为4.08~20.08mA。

要求:显示器显示不变,输出电流值改为 4~20mA。

操作步骤如下:

使管道差压为 0kPa,此时显示器显示为+0.1kPa;

启动菜单,通过菜单浏览,选中"GET 0%"菜单,显示器显示如 图 19 所示:

输入一次"确认"键,程序将模拟量程改为0.1~20.1 kPa,并显示提示信息,显示器显示如图23 所示;

输入一次"确认"键,清除提示信息,程序返回到菜单浏览状态,显示器显示如图 19 所示。

利用"VIEW"菜单,可以查看到此时第一变量为 0.1kPa,第三变量为 4mA;

使管道差压为 20kPa;

利用"VIEW"菜单,可以查看到此时第一变量为 20.1kPa,第三变量为 20mA;

退出菜单,操作完成。

7.6.4 模拟量程加压满位设定

举例说明:假设有一安装在工程现场的差压变送器,其传感器量程 上限为40 kPa,模拟量程为0~40 kPa;实际工作时,在管道差压为0~20kPa 时,显示器显示为0~20kPa,输出电流为4~12mA。

要求:显示器显示不变,输出电流值改为4~20mA。

操作步骤如下:

使管道差压为 20kPa,此时显示器显示为+20kPa;

启动菜单,通过菜单浏览,选中"GET100%"菜单,显示器显示如

图 33 所示;

输入一次"确认"键,程序将模拟量程改为0~20kPa,并显示提示信息,显示器显示如图23所示;

输入一次"确认"键,清除提示信息,程序返回到菜单浏览状态,显示器显示如图 33 所示。

利用"VIEW"菜单,可以查看到此时第一变量为20kPa,第三变量为20mA;

使管道差压为 0kPa;

利用"VIEW"菜单,可以查看到此时第一变量为0kPa,第三变量为4mA;

退出菜单,操作完成。

GET100%

图 33

7.6.5 模拟量程零位设定

举例说明:假设有一安装在工程现场的差压变送器,其传感器量程 上限为 40 kPa,模拟量程为 0~20 kPa;实际工作时,在管道差压为 -4~20kPa 时,显示器显示为 -4~20kPa,输出电流为 3.9~20mA。

要求:显示器显示不变,输出电流值改为 4~20mA。

操作步骤如下:

启动菜单,通过菜单浏览,选中"SET 0%"菜单,显示器显示如 图 34 所示;

输入一次"确认"键,显示器显示模拟量程下限值 0kPa,如图 35 所示;

图 35

输入一次"左"或"右"键,进入数据编辑状态,显示器上出现闪 烁的光标;

输入三次"左"键,将光标移动到小数点左边第一个字符"0"上; 输入四次"右"键,将字符"0"翻转成"4";

输入二次"左"键,将光标移动到字符"+"上;

输入一次"右"键,将字符"+"翻转成"-",显示器显示如图 36 所示;

图 36

输入一次"确认"键,程序将模拟量程下限改为 -4kPa,并显示图 23 所示提示信息;

输入一次"确认"键,清除提示信息,程序返回到菜单浏览状态,显示器显示如图 34 所示。

使管道差压为 -4kPa;

利用"VIEW"菜单,可以查看到此时第一变量为-4kPa,第三变量为4mA;

使管道差压为 20kPa;

利用"VIEW"菜单,可以查看到此时第一变量为20kPa,第三变量为20mA;

退出菜单,操作完成。

7.6.6 模拟量程满位设定

举例说明:假设有一安装在工程现场的差压变送器,其传感器量程 上限为40 kPa,模拟量程为0~40 kPa;实际工作时,在管道差压为0~20kPa 时,显示器显示为0~20kPa,输出电流为4~12mA。

要求:显示器显示不变,输出电流值改为 4~20mA。

操作步骤如下:

启动菜单,通过菜单浏览,选中"SET100%"菜单,显示器显示如 图 37 所示;

输入一次"确认"键,显示器显示模拟量程上限值 40kPa,如图 38 所示;

SET100% +40.00

图 37

图 38

输入一次"左"或"右"键,进入数据编辑状态,显示器上出现闪 烁的光标;

输入四次"左"键,将光标移动到字符"4"上;

输入八次"右"键,将字符"4"翻转成"2",显示器显示如图 39 所示;

输入一次"确认"键,程序将模拟量程上限改为20kPa,并显示图 23 所示提示信息;

输入一次"确认"键,清除提示信息,程序返回到菜单浏览状态,

显示器显示如图 37 所示。

使管道差压为 0kPa;

利用"VIEW"菜单,可以查看到此时第一变量为0kPa,第三变量为4mA;

使管道差压为 20kPa;

利用"VIEW"菜单,可以查看到此时第一变量为20kPa,第三变量为20mA;

退出菜单,操作完成。

7.6.7 数字零点调整

举例说明:假设有一安装在工程现场的差压变送器,其传感器量程 上限为40 kPa,模拟量程为0~20 kPa;实际工作时,在管道差压为0~20kPa 时,显示器显示为0.1~20.1kPa,输出电流为4.08~20.08mA。

要求:显示器显示改为 0~20kPa,输出电流值改为 4~20mA。

操作步骤如下:

使管道差压为 0kPa, 此时显示器显示为+0.1kPa;

启动菜单,通过菜单浏览,选中"SHIFT""ZERO"菜单,显示器显示如图 40 所示;

图 40

输入一次"确认"键,程序修改数字零点值,并显示提示信息,如 图 23 所示;

输入一次"确认"键,清除提示信息,程序返回到菜单浏览状态,显示器显示如图 40 所示。

利用"VIEW"菜单,可以查看到此时第一变量为0kPa,第三变量为4mA;

使管道差压为 20kPa;

利用"VIEW"菜单,可以查看到此时第一变量为20kPa,第三变量为20mA;

退出菜单,操作完成。

7.6.8 模拟量程平行迁移

举例说明:假设有一安装在工程现场的差压变送器,其传感器量程 上限为 40 kPa,模拟量程为 0~40 kPa;实际工作时,在管道差压为 -20~20kPa 时,显示器显示为-20~20kPa,输出电流为 3.9~12mA。

要求:显示器显示不变,输出电流值改为 4~20mA。

操作步骤如下:

使管道差压为 0kPa,此时显示器显示为 0kPa;

启动菜单,通过菜单浏览,选中" OFFSET" "SHIFT"菜单,显示器显示如图 41 所示;

输入一次"确认"键,显示器上显示当前压力/差压的量程百分比值 +0.00%,如图 42 所示;

图 42

输入一次"左"或"右"键,进入数据编辑状态,显示器上出现闪 烁的光标;

输入三次"左"键,将光标移动到小数点左边第一个空字符"□" 上;

输入五次"右"键,将空字符"□"翻转成"5",显示器显示如图 43 所示

输入一次"确认"键,程序将对模拟量程进行平行迁移,即同时修 改模拟量程上限值和下限值,且修改量相等,方向相同。修改是按照下 列公式进行的:

1.量程差 = 量程上限 - 量程下限 = 40-0=40 kPa

2.修改量的百分比值 = 迁移后的百分比值 – 迁移前的百分比值 = 50.00% - 0.00% = 50.00%

3.修改量 = 量程差 × 修改量的百分比值 = $40 \times 50.00\% = 20$ kPa 4.迁移后的量程上限 = 原量程上限 - 修改量= 40 - 20 = 20 kPa 5.迁移后的量程下限 = 原量程下限 - 修改量= 0 - 20 = -20 kPa

同时,显示器显示提示信息,如图 23 所示;

输入一次"确认"键,清除提示信息,程序返回到菜单浏览状态,显示器显示如图 41 所示。

利用"VIEW"菜单,可以查看到此时第一变量为0kPa,第三变量为12mA;

使管道差压为 20 kPa;

利用"VIEW"菜单,可以查看到此时第一变量为 20 kPa,第三变量为 20mA;

使管道差压为 -20 kPa;

利用"VIEW"菜单,可以查看到此时第一变量为 -20 kPa,第三变量为 4mA;

利用"SET 0%"菜单,可以查看到此时的量程下限已变成 –20 kPa; 利用"SET100%"菜单,可以查看到此时的量程上限已变成 +20 kPa; 退出菜单,操作完成。

7.6.9 阻尼设定

请参见"7.5.2 数据编辑"。

提示:有效的阻尼值范围是 0.1s~16s。如果输入参数超出了这个范围,程序不接受参数修改,并在显示器上显示错误信息,如图 28 所示。 7.6.10 显示类型选择

在菜单未启动时,显示器只显示"VIEW"菜单中介绍的三个变量中的一个,可通过"DISPLAY"菜单进行选择设置。

举例说明:假设当前显示类型为第二变量"压力/差压值的量程百分 比值"。

要求:将显示类型改为第一变量"压力/差压值"。

操作步骤如下:

启动菜单,通过菜单浏览,选中"DISPLAY"菜单,显示器显示如 图 44 所示;

DISPLAY

图 44

输入一次"确认"键,显示器显示第二变量,如图 31 所示;

输入一次"左"键或二次"右"键,显示器显示第一变量,如图 30 所示;

输入一次"确认"键,程序将显示类型改为第一变量,并显示图 23 所示提示信息;

输入一次"确认"键,清除提示信息,程序返回到菜单浏览状态,显示器显示如图 44 所示。

退出菜单,可以观察到当前显示为第一变量"压力/差压值"。

7.6.11 单位选择

请参见"7.5.1 数据选择"。

7.6.12 特性函数选择

特性函数有线性和线性平方根两种,可以通过"FUNC-TION"菜单进行选择设置。

举例说明:假设当前特性函数为线性。

要求:将特性函数改为线性平方根。

操作步骤如下:

启动菜单,通过菜单浏览,选中"FUNC-TION"菜单,显示器显示 如图 45 所示;

输入一次"确认"键,显示器显示当前线性特性函数,如图 46 所示; 输入一次"左"键或一次"右"键,显示器显示线性平方根特性函数,如图 47 所示;

图 47

输入一次"确认"键,程序将特性函数改为线性平方根,并显示图 23 所示提示信息;

输入一次"确认"键,清除提示信息,程序返回到菜单浏览状态,显示器显示如图 23 所示。

退出菜单,可以观察到当前特性函数已被改为线性平方根,显示器

显示如图 48 所示;特性函数为线性时,显示器显示如图 49 所示。

图 49

提示: "*"表示不确定的显示。

第八章 注意事项

(1) 变送器调校前请水平放置, 变送器安装至现场后, 应对变送器进 行零点调整。

(2) 变送器在加压之前,应安装并紧固好过程连接。

(3) 变送器应安装在干燥的环境下,切忌雨水冲刷。在恶劣环境下, 应使用变送器保护箱。

(4) 禁止用户自行拆装变送器。

(5) 通电时,不得在爆炸性/易燃性环境下拆卸变送器表盖。

(6) 请用户自行检查变送器供电电压是否符合使用手册中的供电电 压要求。

(7) 要防止渣滓在导压管内沉积。

(8) 导压管要尽可能短一些。

(9) 差压变送器两边导压管内的液柱压头应保持平衡。

(10) 导压管应安装在温度梯度和温度波动小的地方。

(11) 防止引压管内结晶或低温结冰。

第九章 产品维护与保养

根据现场工作条件,参照上一节定期检查仪表输出信号。在正常情况下仪表也可能会有残留沉积物,故应根据现场应用条件定期对变送器 进行清洗,清洗工作最好在室内进行。

操作如下:

1.将过程法兰的螺钉按对角方向松开;

2.小心取下法兰,注意不要伤到传感器隔离膜片;

3.用软毛刷和合适的溶剂清洗传感器膜片,可以连同法兰一起清洗;4.更换过程法兰的 O 型圈;

5.将过程法兰装到测量部件上,应小心不要碰到隔离膜片;(两个过程法兰的断面必须保持在同一个平面,与表壳保持正确角度。)

6.用扭力扳手以对角方向拧紧螺栓、螺母,检查是否有泄露。 产品维修

在整个使用使用过程中都必须遵循有关安全规定,只有在清洗、检查、修理、更换失效件时才能拆开变送器。传感器只能由制造商修理。 失效的变送器应送回制造厂商修理,如有可能请说明故障和原因。

第十章 质保及售后服务

本公司向客户承诺,本仪表供货时所提供的硬件附件在材质和制造 工艺上都不存在缺陷。

从仪表购买之日开始计算,质保期内若收到用户关于此类缺陷的通知,本公司对确实有缺陷的产品实行无条件免费维护或者免费更换,对 所有非定制产品一律保证7天内可退换。

免责声明

在质保期内,下列原因导致产品故障不属于三包服务范围:

(1) 客户使用不当造成产品故障。

(2) 客户对产品自行拆解、修理和改装造成产品故障。

售后服务承诺:

(1) 客户的技术疑问,我们承诺在接收用户疑问后 2 小时内响应处理 完毕。

(2) 返厂维修的仪表我们承诺在收到货物后 3 个工作日内出具检测 结果,7 个工作日内出具维修结果。